



- 
- Soil & Water Studies
  - Ecology • Application Reviews
  - Listed Species Surveys • GPS
  - Environmental Planning & Management
  - Ecological Restoration & Habitat Mitigation
  - Expert Testimony • Permitting

January 20, 2026

VIA HAND-DELIVERY & E-MAIL

Mr. Robert Blythe, Chairman  
Inland Wetlands Agency  
Town of Woodbridge  
11 Meetinghouse Lane  
Woodbridge, Connecticut 06525

**RE: REVIEW OF INLAND WETLANDS APPLICATION**  
**Proposed 100-Unit Multi-Family Development**  
27 Beecher Road, Woodbridge, CT

*REMA Job No.: 26-2859-WDB6*

Dear Chairman Blythe, and Agency members:

Rema Ecological Services, LLC (REMA) was retained by concerned neighboring property owners to conduct an independent technical review of the Inland Wetlands application for the proposed 100-unit multi-family residential development at 27 Beecher Road, Woodbridge, Connecticut. REMA's review evaluated the completeness of the application, consistency with the Town of Woodbridge Inland Wetlands and Watercourses Regulations, and the likelihood of adverse impacts to regulated wetlands and watercourses, including off-site resources, as required under Connecticut General Statutes.

## **1.0 EXECUTIVE SUMMARY**

Based on a review of submitted plans and reports, consultation with third-party technical reviews prepared for the Inland Wetlands Agency and for intervening neighbors, review of the applicant's environmental and engineering submissions, and limited field observations conducted in January 2026, REMA concludes that the application, as currently presented,



does not provide sufficient information or analysis to support a defensible finding of no adverse impact to regulated resources.

REMA recognizes the effort undertaken by the applicant's consultant to characterize the wetland system and associated resources. However, several key conclusions in the submitted environmental assessment rely on qualitative or conclusory statements that are not supported by site-specific data, quantitative analysis, or methodologies customarily relied upon in Connecticut wetland practice.

Key findings include:

- Independent field observations by REMA and the Town's third-party reviewer, Martin Brogie, Inc., indicate that the delineated wetland boundary downgradient of the proposed development understates the actual extent of wetland soils and hydrology. In multiple locations, wetland indicators were observed further upslope than shown on the submitted plans.
- The applicant's environmental assessment concludes that no adverse impacts will occur, but does not include a systematic evaluation of changes to surface water flow, shallow groundwater discharge, or wetland hydroperiod. These issues are central to wetland function and require quantitative analysis.
- As documented in detail by Trinkaus Engineering, LLC, the proposed stormwater management system does not demonstrate compliance with the Connecticut DEEP 2024 Stormwater Quality Manual with respect to infiltration testing, pretreatment, and pollutant removal performance. These deficiencies increase the risk of adverse water quality and hydrologic impacts to downgradient wetlands.
- Alteration of watershed-scale flow paths is likely to result in both increased saturation in some portions of the downgradient wetland and reduced groundwater contribution in others. Either outcome represents a physical alteration of wetland hydrology and constitutes a likely adverse impact under Inland Wetlands regulations.
- Errors and omissions in soil descriptions, geologic interpretation, vegetation identification, and wetland functional assessment methodology reduce the reliability of the conclusions presented in the applicant's reports.



For these reasons, REMA finds that the application is incomplete and that additional delineation work, revised plans, and a comprehensive impact analysis consistent with state guidance are necessary before the Inland Wetlands Agency can make a legally supportable determination regarding likely impacts to regulated resources.

## **2.0 INTRODUCTION & REGULATORY CONTEXT**

### **2.1 Introduction**

The applicant's Environmental Assessment characterizes a broad wetland corridor on and adjacent to the subject site, which is roughly 5.94 acres in size<sup>1</sup>, that is associated with a perennial tributary to Race Brook. Much of this wetland system lies within an existing electric transmission right-of-way extending approximately 900 feet south from Rimmon Road. On the east side of the proposed development, a delineated wetland area lies directly downgradient of the project, although only a minor portion of the wetland system occurs on the subject property (see Figure A, attached).

While some of the wetland delineations were conducted on adjacent property, the Connecticut Inland Wetlands and Watercourses Act requires municipal agencies to consider both onsite and off-site impacts when evaluating regulated activities. In addition, the U.S. Army Corps of Engineers Highway Methodology for wetland functions and values assessment, which is routinely relied upon in Connecticut, requires evaluation of entire wetland units rather than only the on-site portions.

Although the applicant's report generally describes the wetland system and assigns a conclusion of no adverse impact, it does not provide a systematic analysis to support that conclusion. As discussed in the sections below, multiple components of the wetland characterization and impact assessment contain substantive errors or omissions.

---

<sup>1</sup> It should be noted that the Engineering Report (date: 9/5/25) incorrectly calls out the subject site as being 28.26 acres in size. The calculations appear to be based on this error, for both existing and proposed conditions, and there are no plans showing the various catchment areas. Thus, the entire drainage study must be brought into question.



## **2.2 Regulatory Context**

The Connecticut Inland Wetlands and Watercourses Act (CGS §§22a-36 through 22a-45) requires municipal agencies to consider not only direct impacts to wetlands and watercourses, but also activities conducted outside regulated areas when such activities are likely to affect wetlands or watercourses. Consistent with established case law and standard agency practice, determinations must be based on substantial evidence demonstrating whether a proposed activity is likely to result in adverse impacts to the physical characteristics or functions of regulated resources.

Importantly, the absence of direct wetland filling or grading does not preclude regulation where changes in drainage patterns, groundwater recharge or discharge, stormwater quality, or hydroperiod may adversely affect wetlands. In such cases, applicants bear the burden of providing sufficient technical information to allow the Agency to make an informed and defensible decision.

The review presented herein is intended to assist the Inland Wetlands Agency in evaluating whether the application provides adequate information to meet these statutory and regulatory requirements.

## **3.0 DOCUMENTS REVIEWED**

REMA reviewed the plan set and supporting materials submitted by the applicant, including the Environmental Assessment and Impact Analysis prepared by Aleksandra Moch, soil and wetland scientist, as well as associated engineering and survey documents. REMA also reviewed third-party technical evaluations prepared for the Town and for the intervening neighbors and conducted limited off-site field observations in January 2026.

The documents reviewed by REMA include, but are not limited to:

- Wetland Delineation Report, Aleksandra Moch, January 10, 2025
- Environmental Assessment and Impact Analysis of the Wetland and Watercourse, Aleksandra Moch, October 25, 2025
- Engineering Report, James Quill, P.E., September 5, 2025
- Civil Engineering Plan Set (13 sheets), Fuller Engineering and Land Surveying, October 22, 2025, and revised plans dated November 27, 2025
- Survey Map, Fuller Engineering and Land Surveying, January 24, 2025
- Wetland Impact Review, Martin Brogie, Inc., January 14, 2026



- Engineering Review, Trinkaus Engineering, LLC, January 18, 2026 • Applicant Position Statement and Drainage Report

## **4.0 WETLAND DELINEATION ERRORS & POTENTIAL UNAUTHORIZED DISTURBANCE**

Field observations by REMA and findings documented by Martin Brogie, Inc. indicate that the wetland boundary downgradient of the proposed development extends approximately 25 to 35 feet further upslope than shown on the submitted plans and survey. Soil profiles observed in these areas exhibit characteristics of poorly drained wetland soils.

In addition, REMA observed evidence suggesting that portions of the wetland and upland review area may have been disturbed prior to permit submittal. Until the wetland boundary is accurately delineated, surveyed, and approved, the application cannot be considered complete.

Regarding the correction of the wetland delineations on the Morgan property, only REMA has been authorized to delineate and correct the wetland boundary, which can also be reviewed by Mr. Brogie, as the Town's third-party reviewer. REMA will conduct the wetland delineation as soon as possible, after any substantial snow cover has been reduced to no more than 2-3 inches.

## **5.0 HYDROLOGY, SOILS, AND STORMWATER IMPACTS**

### **5.1 Omissions and Errors in Stormwater Impacts Analysis**

Potential adverse impacts to water quality and wetland hydrology must be evaluated for developments of this scale that introduce large, concentrated areas of impervious cover. The applicant's Environmental Assessment does not provide such an analysis. In particular, it does not evaluate how altered runoff volumes, velocities, and routing may affect downgradient wetlands, nor does it assess potential changes to shallow groundwater discharge that supports wetland hydrology.

As documented in the independent engineering review prepared by Trinkaus Engineering, LLC, the proposed stormwater infiltration system is not supported by adequate subsurface infiltration data and does not demonstrate compliance with the Connecticut DEEP 2024



Stormwater Quality Manual. In addition, conditions downgradient of the proposed infiltration galleries—within both the upland review area and the wetland—were not characterized in the Environmental Assessment, despite their relevance to potential hydrologic and water quality impacts.

## **5.2 Soil Characteristics and Subsurface Conditions**

The soils discussion in the Environmental Assessment begins with a substantive geologic error. The glacial melt-out till soils underlying the site are not underlain by gneiss, as stated, but by the Wepawaug Schist formation, consisting of medium- to fine-grained schist or phyllite (see Figure B, attached). Accurate identification of underlying geologic materials is critical to evaluating infiltration capacity, groundwater movement, and the potential for perched or rising water tables.

Key soil characteristics relevant to impact analysis include not only permeability, but also water storage capacity—strongly influenced by depth to restrictive layers—and the suitability of soils for pollutant attenuation, including microbial denitrification. The resolution of soils mapping presented in the Environmental Assessment is too coarse to support these evaluations.

There is a need to reconcile multiple, inconsistent sources of soils information, including USDA/NRCS soils mapping (not included in the January 10, 2025 Wetland Delineation report) (see attached), soil profile descriptions and series identifications in the engineering report and the two Moch reports, and data from deep test pits located just upgradient of the originally proposed level spreader array (Sheet C-3.1 of the original plan set).

The Environmental Assessment states that hardpan “underlined” (sic) the wetland soils at varying depths. If stormwater infiltration results in increased recharge near this restrictive layer, the water table in the off-site downgradient wetland may rise. Sustained increases in water table elevation would stress or kill trees adapted to seasonal saturation at greater depths and would adversely affect tree regeneration by prolonging saturation at or near the soil surface.

The Wetland Delineation report does not include a map showing the spatial extent of individual wetland soil units. It indicates that the Charlton-Chatfield upland soils complex (NRCS Mapping Unit 73C) abuts wetland soils near the proposed development; Chatfield soils may be as shallow as 20 inches to bedrock. In contrast, the USDA/NRCS Web Soil



Survey and the engineering report identify the Agawam soil series (Mapping Unit 29B) underlying the project area and abutting the wetland. The Agawam series is derived from *glaciofluvial* outwash materials, yet surficial geology mapping for this area indicates *glacial till* rather than outwash (see Figure C), raising further questions regarding soil interpretation.

Test Pit 106-25, located at the proposed below-ground infiltration system, documents a thick silt loam layer (approximately 18–32 inches) over fractured rock (approximately 47–87 inches). While soil mottling is commonly used to infer seasonal high water tables, mottling is not discernible in fractured bedrock, limiting the usefulness of these observations for assessing groundwater conditions.

The characteristics of transitional soils downgradient of the proposed building footprint are not known but are likely moderately well drained soils such as the Woodbridge (45) series. More detailed, site-specific soil mapping at an appropriate scale is required to determine permeability and storage capacity of soils receiving stormwater discharge. At present, these critical parameters remain unknown.

### **5.3 Wetland Habitat Downgradient of Stormwater Discharge**

The Environmental Assessment does not include a focused evaluation of the southwestern portion of the wetland system located directly downgradient of the proposed stormwater discharges. This area is likely to be the most vulnerable to increases in runoff volumes and velocities and to elevated nutrient or pollutant inputs. REMA's field inspection on January 14, 2026 documented high tree diversity and relatively low invasive cover in this area, including red maple-dominated wetland forest with swamp white oak (*Quercus bicolor*), pin oak (*Quercus palustris*), and tupelo (*Nyssa sylvatica*).

Hydrology within the off-site wetland is driven by both surface runoff and, critically, shallow groundwater flows that maintain seasonally saturated conditions. Introduction of a large building footprint and associated impervious surfaces within the contributing watershed and groundwater-shed is likely to alter this hydrologic regime.

In areas downgradient of the proposed level spreaders, increased saturation is likely to result in tree stress and eventual mortality. Reduced transpiration following tree loss would further elevate groundwater levels, altering wetland morphology, hydrology, and vegetation structure. The Environmental Assessment does not evaluate the vulnerability of wetland vegetation to increased nutrient or pollutant concentrations associated with stormwater



discharge. Wetlands adapted to low-nutrient conditions are particularly sensitive to enrichment and may shift toward denser, less diverse vegetation assemblages.

Conversely, other portions of the downgradient wetland may be deprived of both surface and shallow groundwater inputs, resulting in long-term dewatering. Such hydrologic diminution would promote a gradual shift toward upland or invasive vegetation. Either scenario—localized wetting or broader-scale drying—constitutes an adverse physical impact to a regulated wetland resource under Inland Wetlands regulations.

## 6.0 WETLAND CHARACTERIZATION: VEGETATION, HABITAT, AND WILDLIFE

### 6.1 Vegetation and Species Identification

The Environmental Assessment contains multiple errors and omissions in vegetation identification and habitat characterization that reduce confidence in its conclusions. Several species are incorrectly named; for example, eastern red cedar is identified as *Cedrus atlantica* (Atlas cedar), a species native to northern Africa, and bitternut hickory is misidentified as butternut hickory. While species lists from the July site visit are generally plausible overall, they omit important wetland species observed by REMA, including substantial populations of swamp rose (*Rosa palustris*), wild yam (*Dioscorea villosa*), and maleberry (*Lyonia ligustrina*).

Although numerous sedges and rushes are identified to species, their approximate locations within the wetland system are not documented. This information is necessary to evaluate potential impacts to specific wetland communities, particularly wooded wetlands located downgradient and east of the proposed development.

The report states that woody diversity is higher in the eastern forested strip than in the western strip. REMA observations documented diverse wetland tree assemblages in the western wooded wetland immediately downgradient of the proposed development, including *Nyssa sylvatica*, *Quercus palustris*, *Quercus bicolor*, and *Alnus incana* in addition to *Acer rubrum*. The statement in the Environmental Assessment likely reflects only the northern portion of the western strip.

Wetland and upland woody species are inappropriately grouped together, and dry-site herbs are listed alongside obligate or facultative wetland species without distinction. Wooded swamp is referred to as “woodland,” a term with a specific technical meaning in Connecticut



vegetation classification (<60% canopy cover). In addition, all listed woody species are described as “dominant,” despite the U.S. Army Corps of Engineers definition of dominance as  $\geq 20\%$  cover.

## **6.2 Wildlife and Avian Use**

The lists of bird species presented as using wetland habitats include unlikely taxa, such as snipe (*Gallinago delicata*), without documentation of habitat suitability or observation. The Environmental Assessment does not indicate whether any of the listed bird species were actually observed on site during field investigations.

Several species identified as expected users of the wooded wetlands along the utility right-of-way—including Eastern Towhee (*Pipilo erythrophthalmus*), Great Crested Flycatcher (*Myiarchus crinitus*), Indigo Bunting (*Passerina cyanea*), Rose-breasted Grosbeak (*Pheucticus ludovicianus*), and Prairie Warbler (*Setophaga discolor*)—are in fact characteristic of utility right-of-way and forest-edge avian communities that often retain a substantial proportion of native species. However, the report does not document whether any of these species were observed on site, nor does it distinguish between confirmed presence and generalized habitat-based expectations.

## **6.3 Invasive Plant Species and Disturbance Characterization**

The Environmental Assessment characterizes invasive plant occurrence within the wetland system in broad and generalized terms that do not reflect observed spatial patterns. Field observations indicate that invasive species density is highest in areas of recent or repeated disturbance, particularly adjacent to Rimmon Road and at pad locations associated with the installation of new steel utility poles, and decreases with distance from Rimmon Road, with the notable exception of a localized area dominated by common reed (*Phragmites australis*).

Statements suggesting that invasive plant presence results in insufficient food resources for wildlife are overly generalized. Many invasive plant species provide pollen, nectar, and fruit resources and their foliage is utilized by generalist insect taxa. It is correct, however, that invasive vegetation does not support host-specific Lepidoptera dependent on native plants; these taxa are an important food source for nestling birds, and their absence represents a more nuanced ecological impact than is conveyed in the report.



The term “disturbance” is applied broadly to the utility right-of-way wetland without distinguishing among disturbance types or intensities. Filling and soil disturbance were largely confined to utility pole pad locations and associated access routes, while the predominant ongoing anthropogenic influence across much of the corridor consists of periodic mowing. Similar mowing occurs in the northern meadow on the eastern portion of the property outside the right-of-way. Failure to distinguish between localized soil disturbance and routine vegetation management overstates the extent and ecological effect of disturbance within the wetland system.

#### **6.4 Hydrology, Water Quality, and Biological Indicators**

The Environmental Assessment emphasizes the importance of springs and groundwater discharge to wetland hydrology and characterizes some groundwater inputs as seasonal. However, the report does not include biological indicators that could help determine whether these springs are perennial or semi-perennial, such as the presence of spring-associated amphibians (e.g., dusky salamanders) or aquatic macroinvertebrate taxa (i.e., mayflies, stoneflies, and caddisflies) characteristic of cold, well-oxygenated groundwater inputs. No observations of wetland fauna are reported.

Although not addressed in the applicant’s report, REMA field observations did not identify evidence of rank or luxuriant vegetative growth typically associated with nutrient-enriched wetlands. This observation is consistent with surrounding land uses and suggests that existing water quality is relatively high, with low nutrient concentrations in the Race Brook tributary, Race Brook itself, and associated pools and drainageways within very poorly drained wetland areas.

Wetlands supported by such low-nutrient conditions often sustain a higher proportion of less common plant and invertebrate species that are poorly tolerant of nutrient enrichment. As a result, these wetlands are particularly vulnerable to adverse impacts from inadequately treated stormwater inputs downgradient of development. This vulnerability is consistent with concerns identified in the independent engineering review prepared by Trinkaus Engineering, LLC, with which REMA concurs.

### **7.0 ASSESSMENT OF WETLAND FUNCTIONS AND VALUES**

The Environmental Assessment conveys that the wetland system associated with Race Brook is large and functionally important, describing a range of hydrologic regimes and cover types



and generally recognizing high wetland value. However, the report does not apply a complete or defensible wetland functions and values assessment methodology (e.g., the U.S. Army Corps of Engineers Highway Methodology) and therefore does not provide the structured ratings, rationales, and supporting observations needed to substantiate its conclusions.

In discussing flood storage and amphibian use, the Environmental Assessment references seasonally flooded areas associated with Race Brook and its tributary and alludes to amphibian breeding and metamorphosis. These observations raise a reasonable potential for vernal pool-type habitat within portions of the on-site and immediately adjacent off-site wetland system. However, the assessment does not include surveys conducted during the biologically appropriate time of year necessary to determine whether these seasonally inundated areas are actively used for breeding by vernal pool obligate species, such as wood frog (*Lithobates sylvaticus*) and spotted salamander (*Ambystoma maculatum*).

The consultant's site investigations were conducted in January, July, and October 2025, which fall outside the critical late-March through early-May breeding window when vernal pool obligates migrate, call, deposit egg masses, and utilize temporary pools for reproduction. As a result, the absence of documented amphibian use in the Environmental Assessment cannot be interpreted as evidence of absence, but rather reflects a lack of seasonally appropriate field investigation. Without targeted surveys during the spring breeding period—when egg masses, calling activity, and larval presence can be reliably observed—the assessment fails to adequately evaluate whether portions of the wetland system function as vernal pool habitat or contribute to the life-cycle support of obligate amphibian species.

This omission is significant, as vernal pool habitats and associated breeding areas are highly sensitive to alterations in hydrology, water quality, and surrounding upland conditions, and their presence would materially affect the evaluation of wetland functions and values, potential impacts, and feasible alternatives. The lack of appropriate seasonal surveys therefore represents a critical data gap that undermines the conclusions presented regarding habitat use and functional value of the wetland system.

Furthermore, several stated rationales do not align with Highway Methodology guidance. For example, “aesthetic value” is reduced primarily due to invasive plant presence, despite standard aesthetic rationales emphasizing vegetation structure, seasonal color, and contrast between high elements (trees) and low expanses (open water, meadow). The assessment also does not address scenic vistas across meadow habitat with forest backdrop, which can contribute substantially to perceived aesthetic value. More broadly, the report does not



provide ratings for the full set of wetland functions/values (e.g., absent, present/secondary, or principal) and omits recreational value. Human use values are characterized as “not applicable,” although there may be legal public access via the utility right-of-way corridor.

Water quality is a core rationale supporting multiple wetland functions and values, including recreational and scientific/educational value. Clean, well-oxygenated headwater and spring-fed systems can support sensitive aquatic taxa, including certain mayflies (Order Ephemeroptera). The report does not evaluate spring biological indicators or aquatic community conditions that would support or refute such functional value.

The assessment references fisheries/aquatic habitat as likely present, but does not include even a basic in-stream evaluation. In clear tributary systems, fish presence can often be confirmed through brief observation, and simple, low-effort field methods (e.g., rock-turning) can provide meaningful information on macroinvertebrate prey base, assuming the evaluator can identify major aquatic insect groups (e.g., mayflies, stoneflies, dipteran larvae such as midges/blackflies, and odonates)

Finally, the report characterizes rural habitat value as reduced by fragmentation associated with a high edge-to-interior forest ratio. REMA notes that maintained open habitats (e.g., mowed meadow) can support key wildlife functions, including prey base (small mammals) for raptors, and that edge habitats often provide dense cover and abundant food resources (nectar and fruit) from sun-tolerant native and non-native shrubs and vines. The report includes an incorrect statement that increased sunlight in woodland edges diminishes wildlife cover; in many edge contexts, increased light supports denser shrub structure and greater forage resources. The report also states that invasives crowd out native “fauna,” which appears to be a typographical error (flora likely intended). REMA further observed that shade-tolerant invasive burning bush can establish within woodland interiors, whereas light-demanding invasives such as Asiatic bittersweet and multiflora rose often expand into wooded strips where canopy loss has occurred—such as areas affected by ash mortality associated with emerald ash borer, a site-relevant factor not discussed in the Environmental Assessment.

## **8.0 CONCLUSIONS**

Based on the deficiencies outlined above, REMA concludes that the Inland Wetlands application for the proposed development at 27 Beecher Road is incomplete and does not provide a sufficient technical basis to support a finding of no adverse impact to regulated



wetlands and watercourses. In addition, the available evidence indicates that the proposed development has the potential to cause significant adverse impacts to wetland hydrology, water quality, and habitat functions.

REMA recommends that the Inland Wetlands Agency require correction of the wetland delineation, resolution of apparent unauthorized disturbances, submission of revised engineering and environmental analyses, and completion of a comprehensive, quantitative impact assessment prior to considering any approval of the proposed project.

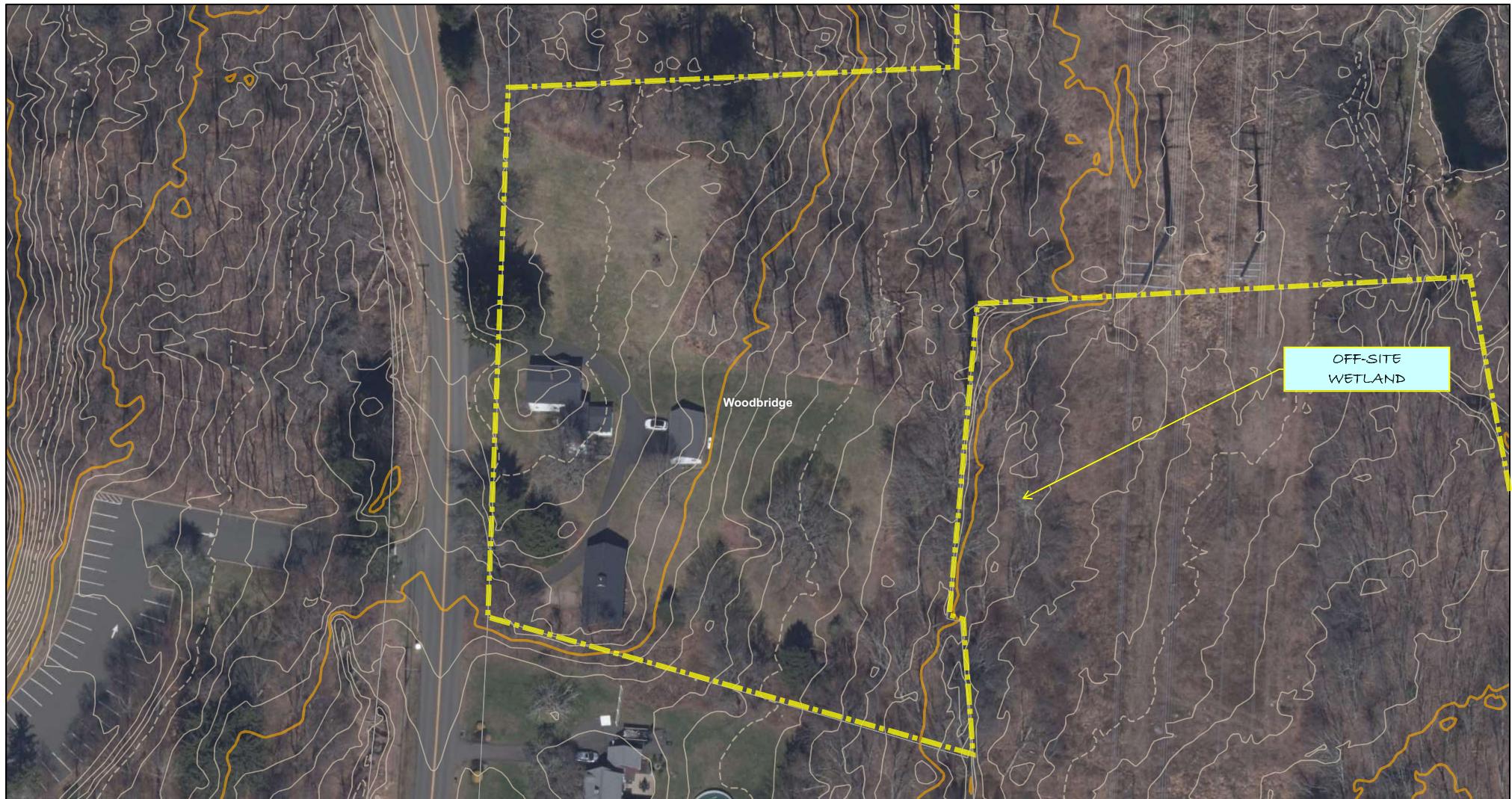
Please feel free to contact us if you have any questions.

Respectfully submitted,

**REMA ECOLOGICAL SERVICES, LLC**

A handwritten signature in black ink that reads "George T. Logan". The signature is fluid and cursive, with a long horizontal line extending to the right from the end of the first name.

George T. Logan, MS, PWS, CSE  
Professional Wetland Scientist  
Registered Soil Scientist, Certified Senior Ecologist


A handwritten signature in black ink that reads "Sigrun N. Gadwa". The signature is fluid and cursive, with a long horizontal line extending to the right from the end of the first name.

Sigrun N. Gadwa, MS, PWS  
Ecologist, Registered Soil Scientist  
Professional Wetland Scientist

Attachments: Figures A, B, and C; USDA-NRCS Web Soil Survey

FIGURE A: SUBJECT PROPERTY

27 Beecher Road, Woodbridge, CT



1/16/2026, 2:07:12 PM

1:1,000

CT Municipalities

2023 Spring 3 inch

Blue: Band\_3

Parcels (2023 collect)

Red: Band\_1

World\_Hillshade

Green: Band\_2

0 50 100 200 ft  
0 15 30 60 m



Sources: Esri, Vantor, Airbus DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NIMA, Geodatistyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap, and the GIS user community. Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, ©

This map is intended for general planning, management, education, and research purposes only. Data shown on this map may not be complete or current. The data shown may have been compiled at different times and at different map scales, which may not match the scale at which the data is shown on this map.

Map created with the CT ECO Advanced Viewer. Visit CT ECO at

## Bedrock Geology

□ ▾ ×

○○ Zoom to

|                 |                                                                  |
|-----------------|------------------------------------------------------------------|
| Area (acres)    | 12,256.9                                                         |
| Age             | Devonian / Silurian                                              |
| Area (sq miles) | 19.2                                                             |
| Definition      | medium- to dark-gray, medium- to fine-grained schist or phyllite |
| Formation       | Wepawaug Schist                                                  |
| Terrane         | Iapetos (Oceanic) Terrane / Connecticut Valley Synclinorium /    |

< >

3 of 3

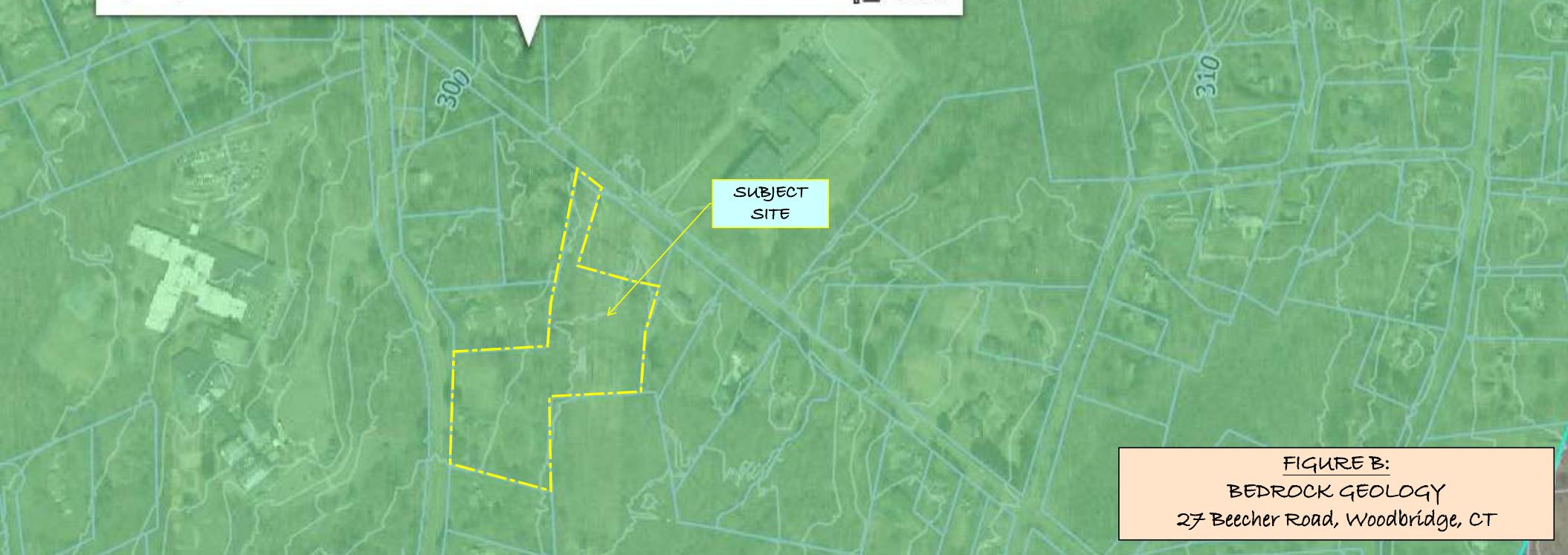
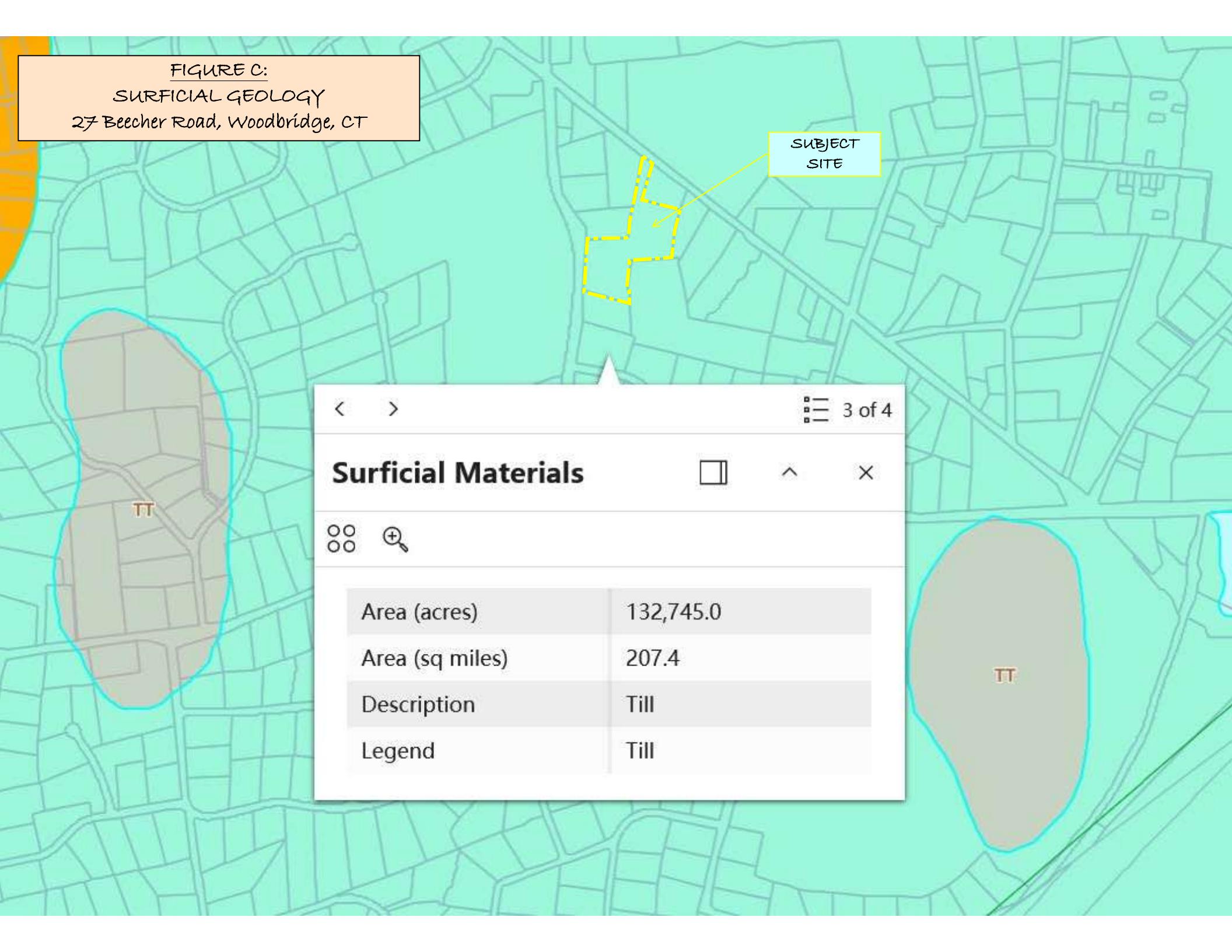
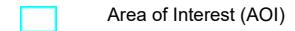




FIGURE B:  
BEDROCK GEOLOGY  
27 Beecher Road, Woodbridge, CT

**FIGURE C:**  
**SURFICIAL GEOLOGY**  
27 Beecher Road, Woodbridge, CT



Soil Map—State of Connecticut, Western Part  
(27 Beecher Road, Woodbridge, CT)




Natural Resources  
Conservation Service

Web Soil Survey  
National Cooperative Soil Survey

## MAP LEGEND

### Area of Interest (AOI)



Area of Interest (AOI)

### Soils



Soil Map Unit Polygons



Soil Map Unit Lines



Soil Map Unit Points

### Special Point Features



Blowout



Borrow Pit



Clay Spot



Closed Depression



Gravel Pit



Gravelly Spot



Landfill



Lava Flow



Marsh or swamp



Mine or Quarry



Miscellaneous Water



Perennial Water



Rock Outcrop



Saline Spot



Sandy Spot



Severely Eroded Spot



Sinkhole




Slide or Slip



Sodic Spot

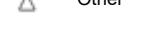


Spoil Area



Stony Spot




Very Stony Spot



Wet Spot



Other



Special Line Features

### Water Features



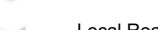
Streams and Canals

### Transportation



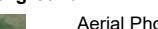
Rails




Interstate Highways



US Routes




Major Roads



Local Roads

### Background



Aerial Photography

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut, Western Part

Survey Area Data: Version 6, Sep 16, 2025

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 14, 2022—Oct 27, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.



## Map Unit Legend

| Map Unit Symbol                    | Map Unit Name                                                                   | Acres in AOI | Percent of AOI |
|------------------------------------|---------------------------------------------------------------------------------|--------------|----------------|
| 3                                  | Ridgebury, Leicester, and Whitman soils, 0 to 8 percent slopes, extremely stony | 30.9         | 31.4%          |
| 29B                                | Agawam fine sandy loam, 3 to 8 percent slopes                                   | 30.1         | 30.6%          |
| 46B                                | Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony                   | 0.3          | 0.3%           |
| 50A                                | Sutton fine sandy loam, 0 to 3 percent slopes                                   | 3.2          | 3.3%           |
| 61C                                | Charlton and Charlton fine sandy loams, 8 to 15 percent slopes, very stony      | 5.6          | 5.7%           |
| 73C                                | Charlton-Chatfield complex, 0 to 15 percent slopes, very rocky                  | 6.4          | 6.5%           |
| 84B                                | Paxton and Montauk fine sandy loams, 3 to 8 percent slopes                      | 0.2          | 0.2%           |
| 85B                                | Paxton and Montauk fine sandy loams, 3 to 8 percent slopes, very stony          | 3.9          | 4.0%           |
| 260C                               | Charlton-Urban land complex, 8 to 15 percent slopes                             | 7.6          | 7.7%           |
| 306                                | Udorthents-Urban land complex                                                   | 10.1         | 10.3%          |
| <b>Totals for Area of Interest</b> |                                                                                 | <b>98.5</b>  | <b>100.0%</b>  |